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Abstract 

Many proteins contain a number of atoms of the same 
kind which are potential anomalous scatterers. It is 
shown that from two data sets, one normal and one 
with anomalous scattering, it is possible to extract 
the contribution of the anomalous scatterers and to 
solve for them by normal direct methods. From the 
phases of the structure factors of the anomalous scat- 
terers alone the phases of the normal protein structure 
factors may, in principle, be found exactly. 

Introduction 

With the availability of synchrotron radiation much 
recent attention has been directed towards the use of 
anomalous scattering as a tool for solving crystal 
structures. Karle (1980) has described a technique 
which involves collecting data at several wavelengths 
and which can be made to yield a system of linear 
equations from which the separate contributions of 
each of several sets of different kinds of anomalous 
scatterer can be derived. 

Here we shall deal with the case of protein struc- 
tures containing many anomalous scatterers all of the 
same kind as may occur, for example, if the structure 
contains several disulphide bridges. 

The basic idea 

In Fig. 1, F(h) and F(h) represent Friedel-related 
structure factors in the absence of anomalous scatter- 
ing. We consider the case of m similar anomalous 
scatterers for which the extra component of the scat- 
tering factor is 

f~=f'+if". (1) 

The extra contribution to the structure factor of 
index h is 

Fe(h)= ~. f~ exp(2zrih, rj), (2) 
j = l  

where the summation is over all the anomalous scat- 
terers. This may be written as 

Fe(h)- Ifel ei~ ~ exp (2rrih. rj), (3) 
j = l  
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where 

tan 8 = f"/f' 
and this contribution makes an angle 0 + 8 with F(h) 
as shown in Fig. 1. 

The extra contribution to the structure factor of 
index -h ,  Fe(h), has the same magnitude as Fe(h) but 
makes an angle ( 0 - 8 )  with F(h). 

Hence we may write for the structure factors of 
index h and h with anomalous scatterering 

IFA(h)I 2 = I F(h)l 2 + I Fe(h)l ~ + 21F(h)F~(h)l cos (0 + 8) 

(4a) 

and 

I FA(~)I = = I F(h)l = + l F~(h)[ 2 + 21F(h)Fe(h)l cos (0 - 8). 

(4b) 

Writing IFe(h)l /IF(h)l--  g, 

IFA(h)I 2 
l = za(h) 

IF(h)l 2 

and (5) 

IFA(~)I 2 
l = za(K) 

IF(h)l 2 

one obtains for equations (4) 

g2+2g cos (0 + 8 ) - A ( h ) = 0  

and 

g2 +2g cos (0 - 8 ) -  A(~) = 0. 

(6a) 

(6b) 
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Fig. 1. The composition of the structure factors with anomalous 
scattering, FA(h) and FA(h), in the terms of the normal structure 
factors, F(h) and F(h), and the anomalous contributions, Fe(h) 
and Fe(h). 
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Since 8 is fixed, and the same for all h, then values 
of  g and 0 can be found for any pair of values A(h) 
and A(h). 

The solutions of equations (6) are illustrated in Fig. 
2 for 8 = 30 °. This figure shows lines of constant 0 
and, with the exception of 0 = 180 °, the values of g 
are marked at intervals of  0-1. For 0 = 180 ° values of 
g first increase with distance from the origin. 
However, g = 0 . 9  corresponding to A ( h ) = A ( h ) =  
-0 .75  represents an extremum and no pair of values 
further from the origin in the same direction on the 
180 ° line are possible. Subsequently, the 0 = 180 ° line 
turns back along the same path, passes through the 
origin and then overlaps the line 0 = 0 °. This pattern 
may be illustrated by the lines 0 = 175 and 185 ° which 
turn backwards after a tight hairpin bend; in the case 
of 0 = 180 ° the turning backwards is along exactly the 
same path, which makes the behaviour more difficult 
to illustrate. 

Values of A correspond to the fractional increases 
in the intensity of a reflexion when anomalous scatter- 
ing occurs. Clearly A - > - 1 ,  which is seen in Fig. 1, 
but in principle A can take large positive values. 
Actually, for all but the very smallest values of IF(h)l 
the values of [A[ are unlikely to exceed 0.5 or so and 
will usually be much smaller. In fact the maximum 
value of  g is 

g m a x  = mlfel/IF(h)l (7) 

and its r.m.s, value 

g r . m . s .  = m ' / ~ l f ~ l l l F ( h ) l  • (8) 
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Fig. 2. Lines of constant 0 for various values of A(h), A(h) and 

8 = 30 °. Values of g are marked at intervals of 0.1 with special 
markings for g = 0.5 &, g = 1.0 O, g = 1.5 • and g = 2.0 i .  For 
the line 0= 180 ° only the special-marking points are given 
together with the point g = 0-9 at which the line turns ba~k on 
to itself. 

For large m it is unlikely that a value of g much 
larger than 3g . . . .  s .  will occur. 

While Fig. 2 indicates that for each pair A(h) and 
A(h) there is a pair of  solutions (g, 0), in practice it 
will be very rare for both solutions to be possible. 
Even if both solutions are theoretically possible then 
one of them (usually the one with the smaller g) will 
be much more probable. This is illustrated by the 
pairs of solutions for the marked points in Fig. 2. 

A (0-27, 150 ° ) (1-50, 175 ° ) 

B (0.45, 90 °) (1.79, 165 °) 

C (0.36,330 °) (2.05, 185 °) 

D (0.47,240 °) (1.56, 195°). 

Except for very small values of [F(h)l the first of  
each pair of solutions will be by far the more probable 
and, indeed, the second solutions may be impossible. 

A procedure for structural solution 

For the success of  this method the number of 
anomalous scatterers should be sufficiently large to 
give measurable values of A but not so huge that the 
anomalous scatterers alone constitute an impossibly 
difficult structure to solve. An ideal case for a small 
protein might be to have forty or so anomalous scat- 
terers in the unit cell. 

Even at modest resolution the number of  data from 
a protein will be very large and the number  of values 
of g which can be reliably found will be much greater 
than is required precisely to define the positions of 
the anomalous scatterers. A subset of the largest 
glF(h)l values can be used as an input to a direct- 
methods program and an E map showing characteris- 
tic features, e.g. disulphide bridge atoms, should 
readily be recognised. 

From the coordinates of  the anomalous scatterers 
there may be calculated 

Q(h)= ~ exp(27rih.rj)=lQ(h)l exp{i~b(h)} (9) 
j = l  

and then the phase of  F(h) is given by 

qg(h)-- ~ ( h ) -  O, (10) 

where 0 is the angle associated with g in Fig. 2. 
Thus, in principle, it is possible unambiguously to 

phase the protein reflexions. 

Discussion 

The extent to which this proce/dure will be successful 
will depend on the accuracy With which the data can 
be measured - in particular values of A(h) and A(h). 
Thus an experimental procedure in which the differ- 
ence in intensity is detected when the wavelength 
moves to the absorption edge would be preferred to 
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finding differences from complete data sets with pos- 
sible scaling errors. 

Errors in assessing g values are probably not too 
critical in the sense that a sufficient number of reliably 
indicated values will usually be available. Any g not 
reliably estimated may simply be rejected. It will also 
be seen from Fig. 2 that even if the accuracy of A(h), 
A(h) measurements is sufficient only to be in the 
correct quadrant of the diagram an error in 0 [and 
hence in q~(h)] will result which will be quite accep- 
table by the standards of protein crystallography. 

Although the determination of (g, 0) solutions has 
been explained in terms of the diagram in Fig. 2, in 
practice these can be deduced for any 6, A(h) and 
A(h) from a simple computer program. 

Tests need to be done to confirm or otherwise the 
effectiveness of this procedure. It is hoped to be able 
to report on such tests in due course. 
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Abstract 

The symmetry of an incommensurately modulated 
structure may be described in terms of the basic 
structure (B) and the modulation pattern (M). This 
description contrasts with the superspace-group 
approach, in which the structure is defined in a space 
of dimension 3+d,  where d is the number of 
rationally independent modulation vectors. Space 
groups GB and GM are defined, consisting of sym- 
metry operations of B and M which are simply inter- 
related. These groups together characterize the total 
symmetry; they lead to a classification which for d = I 
is equivalent to the superspace groups. With this 
dualistic approach, all symmetry operations can be 
based on symmetry elements in the space of the 
crystal, and the lattice types can be composed simply 
from those of GB and GM. 

1. The dualistic approach 

We shall exemplify the modulation phenomenon by 
a hypothetical two-dimensional compound OX, in 
which the X atoms are not modulated at all. The 
basic structure is orthogonal, plane group pmm, basic 
vectors a, b; Z = 1 (Fig. 1). We assume modulation 
of the O atoms with a wave vector fib*, where/3 = b/h 
is an irrational number, A being the modulation 
wavelength. Then for a transverse displacive type of 
modulation, the crystal might look as in Fig. 2. The 
periodicity in the direction of b is lost - at least when 
'periodicity' is taken in the usual sense. However, 
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there is still perfect order in this direction - only there 
are two periods instead of one, viz b and A. 

The structure has, therefore, a dual character, being 
composed of the basic structure and a modulation 
pattern. The latter is indicated by the dashed wavy 
line in Fig. 2. Such a line becomes ambiguous as soon 
as a longitudinal component of the displacement is 
present (Fig. 3). In that case, a complete vector func- 
tion is required, representing the displacement vector 
u as a periodic function of Y, the coordinate in the 
direction of b. It is important to specify that u(Y~) is 
the displacement of an atom which in the basic struc- 
ture (not in the modulated one) has Y = Y~. 

In this way the modulated structure of Fig. 3, too, 
can be decomposed into two components: the basic 
structure and u(Y). Each of these is strictly periodic 
within the two-dimensional space considered here. 
Therefore the symmetry of the crystal can be 

a ~, ~ x x 
~/ 0 I. 0 0 

× x 

0 0 0 
X X X X 

0 0 0 
X X X X 

0 0 0 
X X X X 

Fig. 1. Two-dimensional crystal XO, basic structure for the modu- 
lated structures in Figs. 2-5. 
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